A Novel and Stable Catalyst for the Electrochemical Oxidation of Methanol and Tetrahydrofuran: Electrochemical Oxidation of Organic Substrates Catalysed by cis-[R~~~(6,6'-CI2bpy)~(OH2)~]2+ (6,6'-CI2bpy = **6,6'-dichloro-Z,Z'-bipyridine)**

Chi-Ming Che* and Wai-On Lee

Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong

The electrochemical oxidations of alcohols to aldehydes/ketones and tetrahydrofuran to y-butyrolactone at 1.2 V [vs. standard calomel electrode (s.c.e.)] are catalysed by cis- $[Ru^{\parallel}(6,6'-Cl_2bpy)_2(QH_2)_2]^2$ + (6,6'-Cl₂bpy = 6,6'-dichloro-2,2'bipyridine), with current efficiency > **80%;** a Nafion-coated basal-plane pyrolytic graphite electrode incorporating $cis-[Ru''(6,6'-Cl₂bpy)₂(OH₂)₂]$ ²⁺ is active in catalysing the electrochemical oxidation of propan-2-ol to acetone.

The search for new inorganic materials capable of catalysing the electrochemical oxidation of hydrocarbons is currently of intense interest.¹⁻⁴ There are several reports of the use of ruthenium 0x0 complexes of aromatic amines, such as $[Ru^{IV}(try)(bpy)O]²⁺$, (trpy = 2,2',2"-terpyridine; bpy = 2,2'-bipyridine)^{2,4} and *trans*-[$Ru^{V1}(phen)₂O₂]²⁺$ (phen = l,lO-phenanthroline)3 as electrochemical catalysts; however, the reported examples are either unstable when subjected to extended electrolyses, or exhibit complex electrochemistry, with the $Ru=O/Ru-OH_2$ couples strongly affected by the nature of the electrode surface.2 Our recent work has shown that the cis-dioxoruthenium(v1) system can be stabilized by the 6,6'-C12bpy **(6,6'-dichloro-2,2'-bipyridine)** ligand; the *cis-* $[RuVI(6,6'-Cl_2bpy)₂O_2]^2$ + complex is a powerful oxidant which easily oxidizes the unactivated C-H bonds of cyclohexane and tetrahydrofuran.⁵ The reversible electrochemical behaviour and stability of this RuVI complex in fluid solution suggest that its precursor *cis*-[Ru^{II}(6,6'-Cl₂bpy)₂(OH₂)₂]²⁺ is an important electro-oxidative catalyst. We describe here the electrochemical oxidation of alcohols and tetrahydrofuran catalysed by this Ru" complex.

At pH 1.1, the cyclic voltammogram of cis -[Ru^{II}(6,6'- Cl_2 bpy)₂(OH₂)₂]²⁺ displays two reversible/quasireversible couples, I at 0.93 and **I1** at 1.17 V *vs.* standard calomel electrode $(s.c.e.).$ ⁵ In the presence of organic substrates (0.4 M), such as methanol, ethanol, propan-2-01, benzyl alcohol, tetrahydrofuran, glucose, or acetaldehyde, the couple I remains unchanged whereas the couple **I1** is replaced by a large catalytic oxidative wave at *ca.* 1.2 V; the cyclic

propan-2-ol $>$ ethanol $>$ methanol. This suggests that the rate-limiting step of the electrochemical reaction is the oxidation of the organic substrate by the ruthenium 0x0 complex. Controlled potential electrolyses of cis -[Ru^{II}(6,6'- Cl_2 bpy)₂(OH₂)₂]²⁺ in the presence of methanol, ethanol, propan-2-01, and tetrahydrofuran at 1.2 V yielded formaldehyde, acetaldehyde, acetone, and y-butyrolactone, respec-

Figure 1. Cyclic voltammograms of *cis*-[Ru^{II}(6,6'-Cl₂bpy)₂(OH₂)₂]²⁺ in the presence of (a) 0.4 M-propan-2-ol and (b) 0.4 M-tetrahydrofuran at pH 1.1, scan rate 50 mV **s-1;** basal-plane pyrolytic graphite working electrode.

I1

voltammograms with propan-2-01 and tetrahydrofuran are shown in Figure 1. Since the couple **I1** is due to the oxidation of Ru^{III} to Ru^{VI} , the catalytic oxidative wave can be explained by fact that at 1.2 V the electro-generated ruthenium $\sim \infty$ complex, possibly *cis*-[$Ru^{VI}(6,6'-Cl₂bpy)₂O₂]²⁺$, rapidly oxidizes the organic substrates and is itself reduced back to cis -[Ru^{II}(6,6'-Cl₂bpy)₂(OH₂)₂]²⁺. With propan-2-ol, the magnitude of the oxidative current is little affected upon repetitive cycling between 0.4 and 1.2 V (50 times; scan rate 50 $mV s^{-1}$, indicating that no deterioriation of the ruthenium complex has occured. The current is also insensitive to scan rate (10 to 100 mV s^{-1}), and when measured for different alcohols under the same conditions decreases in the order

Figure 2. Cyclic voltammogram of a cis - $(Ru^{II}(6,6'-Cl_0bpv))$,- $(OH₂)₂$]²⁺-modified pyrolytic graphite electrode in 0.1 M-CF₃CO₃H; scan rate 50 mV **s-1.**

Substrate	Product	Current efficiency (%)	Turnover	Time of electrolysis (h)
Methanol	Formaldehyde	80	26	8
Ethanol	Acetaldehyde	96	27	4
Propan-2-ol	Acetone	97	43	4
Tetrahydrofuran	γ -Butyrolactone	85		8

Table 1. Electrochemical oxidation of alcohols (0.4 M) and tetrahydrofuran (0.4 M) in 0.1 M-CF₃CO₂M/0.1 M-CF₃CO₂Na (30 ml) catalysed by *cis*-[Ru¹¹(6,6'-Cl₂bpy)₂(OH₂)₂]²⁺ (1 mm).

tively, with current efficiency over 80% in each case; the results are summarized in Table 1.[†] After electrolysis, cis -[Ru^{II}(6,6'-Cl₂bpy)₂(OH₂)₂]²⁺ remains virtually unchanged (over 80% recovery, determined by spectrophotometric methods), in contrast to the trans- $[\text{RuIII}(\text{phen})_2(\text{OH})$ - $(OH₂)$ ²⁺ (ref. 3) and [Ru^{IV}(trpy)(bpy) O ^{[2+} (ref. 4) systems, which are transformed into a green substance upon extended electrolysis. Table 1 shows that the turnover numbers fall in the order propan-2-ol $>$ ethanol $>$ methanol $>$ tetrahydrofuran, in accord with their relative susceptibility to oxidation.

The complex cis -[Ru^{II}(6,6'-Cl₂bpy)₂(OH₂)₂|2+ can be incorporated into a modified electrode, which may be useful in electrochemical sensors. A nafion-coated electrode was fabricated by applying a solution of nafion (0.5% w/w) in propan-2-ol $(450 \mu l)$ to the surface of a basal-plane pyrolytic graphite electrode (surface area 15 cm^2), and evaporating the propan-2-01. The resulting nafion-coated electrode was dipped into aqueous 1 mm-cis- $\text{Ru^{II}}(6,6'-\text{Cl}_2\text{bpy})_2(\text{OH}_2)_2\}$

 $[CIO₄]$ ₂ for 10 min then rinsed with deionized water. Cyclic voltammetric measurements (scan rate 5 mV s^{-1}) showed that the amount of Ru^{II} complex incorporated was 4.7×10^{-7} mol. In aqueous solution , this Ru-modified nafion-coated electrode is stable for 8 h and has the same cyclic voltammogram (redox couples at 0.92 and 1.12 V *vs.* s.c.e., with ΔE_p 60 and 30—40 mV, respectively) as cis-[Ru^{II}(6,6'-Cl₂bpy)₂(OH₂)₂]²⁺ in homogeneous solution (Figure 2). It catalyses the electrochemical oxidation of propan-2-01 to acetone in water (pH 1.1) at 1.2 V, with current efficiency 87% and 198 turnovers in a 5 h electrolysis.

W.-0. L. acknowledges the receipt of a scholarship, administered by the Croucher Foundation.

Received, 4th January 1988; Corn. 810001 70

References

- 1 **S.** Torii, T. Inokuchi, and T. Sugiura, *J. Org. Chem.,* 1986,51, 155.
- 2 R. C. McHatton and F. C. Anson, *Inorg. Chem.,* 1984,23,3935.
- 3 C. M. Che and W. H. Leung, *J. Chem. Soc.*, *Chem. Commun.*, 1987, 1376.
- 4 M. S. Thompson, W. F. DeGiovani, B. A. Moyer, and T. J. Meyer, *J. Org. Chem.,* 1984,49, 4972.
- *5* C. M. Che and W. H. Leung, *J. Chem. SOC., Chem. Commun.,* 1987,1376; **S.** Ogawa and **S.** Shiraishi, *J. Chem.* **SOC.,** *Perkin Trans. I* , 1980, 2527.

t Conditions for controlled potential electrolyses: glassy carbon cup (diam. *5* cm; height *5* cm) as working electrode; 1 mM-cis-[Rur1- (6,6'-Cl₂bpy)₂(OH₂)₂][ClO₄]₂, in 0.1 м-CF₃CO₂H/0.1 м-CF₃CONa (30 ml) and 0.4 M-organic substrate at 25° C. Acetaldehyde, acetone, and y-butyrolactone were measured by g.1.c.-mass spectrometry. Formaldehyde was estimated by conversion into the 2,4-dinitrophenylhydrazone, followed by g.1.c.-mass spectrometry.